General Physics, 2nd Edition
General Physics, 2nd Edition
2nd Edition
ISBN: 9780471522782
Author: Morton M. Sternheim
Publisher: WILEY
bartleby

Videos

Question
Book Icon
Chapter 18, Problem 12E
To determine

The ratio of the radius of the myelinated and unmyelinated.

Blurred answer
Students have asked these similar questions
12. (a) Using Eq. AQ=CAV and the data in the Table, calculate the number of ions entering the axon during the action potential, per meter of nonmyelinated axon length. (The charge on the ion is 1.6 x 10-19 coulomb.) (b) During the resting state of the axon, typical concentrations of sodium and potassium ions inside the axon are 15 and 150 millimole/liter, respectively. From the data in the Table, calculate the number of ions per meter length of the axon. Table 13.1 Properties of Sample Axons Hint: 1 F (farad) = 1coulomb/1 volt Property Nonmyelinated axon Myelinated axon Axon radius 5 x 10-m 5 x 10-6 m 1 mole /liter = 6.02 x 1020 particles (ions, atoms, etc. ) Resistance per unit length of fluid cm 6.37 x 10°2/m 6.37 x 10°2/m both inside and outside axon (r) Conductivity per unit length of axon membrane (gm) 1.25 x 10-4 mho/m In the resting state, the axon voltage is -70mV. During the pulse, the voltage changes to about +30mV, resulting in a net voltage change across the membrane of 100…
Assume a length of axon membrane of about 0.10 m is excited by an action potential (length excited = nerve speed x pulse duration 50.0 m/s x 0.0020 s = 0.10 m). In the %D resting state, the outer surface of the axon wall is charged positively with Kt ions and the inner wall has an equal and opposite charge of negative organic ions, as shown in the figure below. Model the axon as a parallel-plate capacitor and take C = KƐ A/d and Q = CAV to investigate the charge as follows. Use typical values for a cylindrical axon of cell -8 wall thickness d = 1.5 x 10 m, axon radius r = 2.0 x 10- um, and cell-wall dielectric constant K = 2.9. External fluid + Positive charge layer Axon wall membrane d Negative charge layer Internal fluid Axon radius = r (a) Calculate the positive charge on the outside of a 0.10-m piece of axon when it is not conducting an electric pulse. (Assume an initial potential difference of 7.0 x 10-2 v.) 1.035E-9 Your response differs from the correct answer by more than 10%.…
a) What was the smallest voltage required to produce a contraction (the threshold voltage)? What proportion of the fibers in the muscle do you think were contracting to produce this small response? b) What was the smallest voltage required to produce the maximum (largest) contraction? What proportion of the fibers in the muscle do you think were contracting to produce this maximal response?
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    College Physics
    Physics
    ISBN:9781305952300
    Author:Raymond A. Serway, Chris Vuille
    Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
DC Series circuits explained - The basics working principle; Author: The Engineering Mindset;https://www.youtube.com/watch?v=VV6tZ3Aqfuc;License: Standard YouTube License, CC-BY