Foundations of Materials Science and Engineering
Foundations of Materials Science and Engineering
6th Edition
ISBN: 9781259696558
Author: SMITH
Publisher: MCG
bartleby

Videos

Textbook Question
Book Icon
Chapter 8.15, Problem 50SEP

Derive the lever rule for the amount in weight percent of each phase in two-phase regions of a binary phase diagram. Use a phase diagram in which two elements are completely soluble in each other.

Expert Solution & Answer
Check Mark
To determine

Obtain the weight percentages of the liquid and solid phases in any two phase region of binary equilibrium phase diagram by the help of lever rule.

Explanation of Solution

Let the phase diagram of two elements AandB that are totally soluble in each other. Let the alloy composition of interest be x and its weight fraction of BinA as w0.

The lever equations can be obtained by the help of weight balances. The first equation of lever rule is derived by taking the sum of the weight fraction of liquid and solid phase as 1.

Write the sum of the phases as,

Xl+Xs=1

Xl=1Xs

Xs=1Xl

Here, weight fraction of liquid and solid phase is XlandXs respectively.

Derive the second equation of the lever rule by a using a weight balance of B in the alloy as a whole and the sum of B in the two different phases.

Write the weight balance by considering 1g of alloy.

[GramsofBintwophasemix]=[GramsofBinliquidphase]+[GramsofBinsolidphase](1g)(1)(%w0/100)=[(1g)(Xl)(%wl/100)]+[(1g)(Xs)(%ws/100)]w0=Xlwl+Xsws (I)

Substitute 1Xs for Xl in Equation (I).

w0=(1Xs)wl+Xsws=wlXswl+Xsws

XswsXswl=w0wl (II)

Rewrite Equation (II) to get weight fraction of solid phase.

Xs=w0wlwswl (III)

Substitute 1Xl for Xs in Equation (III).

1Xl=w0wlwswl

Xl=1w0wlwswl=wswlw0+wlwswl=wsw0wswl (IV)

Equations (III) and (IV) are called as lever rule equations for solid and liquid phase respectively.

Hence, the lever rule equations are Xs=w0wlwswl and Xl=wsw0wswl.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
For two hypotetical materials which have limitless solubility for both in the “liquid” and “solid” states in each other, the following data are listed. Melting Temperatures of material A and B are Tm,A and Tm,B respectively, Liquidus and Solidus curves are circular arcs.   a- Draw the related “Phase Diagram” of Material A and Material B showing the data given and calculated. b- Calculate/Determine the compositions of phases at T2 , explain the procedure. c- Calculate/Determine the “percentages” of “phases” of Alloy,2 at T2 , explain the procedure.   Given: -Tm,A, Celcius =300 -Tm,B, Celcius =800 -T1, Celcius =600 -B percentage of Liquid phase at T1 =25 -B percentage of Solid phase at T1 =70 -B percentage of Alloy 2. =50 -T2, Celcius =650 -B percentage of Liquid phase of Alloy 2 at T2 = to be calculated -B percentage of Solid phase of Alloy 2 at T2 = to be calculated
1) Given the following information construct a hypothetical phase diagram formetals A and B between the temperatures of 400 and 800 o C given the followinginformation  The two end member components are A and B The bottom axis should given in mol% B with 100 mol% B being on the right sideof the diagram. The melting temperature of metal A is 750 o C. The melting temperature of metal B is 700 o C. One eutectic occurs at 600 o C and 75 mol% B. The maximum solubility of A in B is 15 mol% A, and occurs 600 o C.The maximum solubility of B in A is 10 mol% B and occurs 600 o C. 2) Label all regions on the phase diagram 3) Sketch representations of the equilibrium microstructures for the phase diagramabove, for an A-B alloy of the eutectic composition at 750 and 500 o C
According to the following graph, two samples of 1080 steel are cooled from the eutectoid temperature, one at a cooling rate of 250°C/s and the other at a cooling rate of 7.27x10-8 °C/s. Specify the phases obtained and explain their formation from thermodynamic and kinetic perspectives. Also, briefly describe their formation. Draw the microstructure of the phases obtained. Sıcaklık (C) 800 700 600 500 400 300 200 100 0 10 1 T M(başlama) M(% 50) M(% 90) 10 M+O -Otektoid Sıcaklık 10² Zaman (s) % 50 10³ 104 105

Chapter 8 Solutions

Foundations of Materials Science and Engineering

Ch. 8.15 - Prob. 11KCPCh. 8.15 - Prob. 12KCPCh. 8.15 - Prob. 13KCPCh. 8.15 - Describe the mechanism that produces the...Ch. 8.15 - Can coring and surrounding occur in a...Ch. 8.15 - What is a monotectic invariant reaction? How is...Ch. 8.15 - Write equations for the following invariant...Ch. 8.15 - How are eutectic and eutectoid reactions similar?...Ch. 8.15 - Distinguish between (a) a terminal phase and (b)...Ch. 8.15 - Distinguish between (a) an intermediate phase and...Ch. 8.15 - What is the difference between a congruently...Ch. 8.15 - Consider an alloy containing 70 wt% Ni and 30 wt%...Ch. 8.15 - Consider the binary eutectic coppersilver phase...Ch. 8.15 - If 500 g of a 40 wt% Ag60 wt% Cu alloy is slowly...Ch. 8.15 - A lead-tin (PbSn) alloy consists of 60 wt%...Ch. 8.15 - A PbSn alloy (Fig. 8.12) contains 40 wt% and 60...Ch. 8.15 - An alloy of 30 wt% Pb70 wt% Sn is slowly cooled...Ch. 8.15 - Consider the binary peritectic iridiumosmium phase...Ch. 8.15 - Consider the binary peritectic iridiumosmium phase...Ch. 8.15 - Consider the binary peritectic iridiumosmium phase...Ch. 8.15 - In the copperlead (CuPb) system (Fig. 8.24) for an...Ch. 8.15 - For an alloy of Cu70 wt% Pb (Fig. 8.24), determine...Ch. 8.15 - What is the average composition (weight percent)...Ch. 8.15 - Consider an Fe4.2 wt% Ni alloy (Fig. 8.17) that is...Ch. 8.15 - Consider an Fe5.0 wt% Ni alloy (Fig. 8.17) that is...Ch. 8.15 - Determine the weight percent and composition in...Ch. 8.15 - Determine the composition in weight percent of the...Ch. 8.15 - Draw, schematically, the liquidus and the solidus...Ch. 8.15 - Consider the CuZn phase diagram of Figure 8.26. a....Ch. 8.15 - Consider the nickelvanadium phase diagram of...Ch. 8.15 - Consider the titaniumaluminum phase diagram of...Ch. 8.15 - What is the composition of point y in Figure...Ch. 8.15 - In Figure 8.12, determine the degree of freedom,...Ch. 8.15 - The cooling curve of an unknown metal shows a...Ch. 8.15 - In the PbSn phase diagram (Fig. 8.12), answer the...Ch. 8.15 - Based on the CuAg phase diagram in Figure P8.23,...Ch. 8.15 - Based on the PdAg phase diagram in Figure EP 8.3,...Ch. 8.15 - Prob. 49SEPCh. 8.15 - Derive the lever rule for the amount in weight...Ch. 8.15 - Based on the AlNi phase diagram given in Figure...Ch. 8.15 - Prob. 52SEPCh. 8.15 - Based on the Al2O3SiO2 phase diagram in Figure...Ch. 8.15 - (a) Design a CuNi alloy that will be completely...Ch. 8.15 - Prob. 55SEPCh. 8.15 - Given that Pb and Sn have similar tensile...Ch. 8.15 - Consider the sugarwater phase diagram shown in...Ch. 8.15 - In Figure P8.57, if 60 g of water and 140 g of...Ch. 8.15 - In Figure P8.57, if 30 g of water and 170 g of...Ch. 8.15 - At 80C, if the wt% of sugar is 80%, (a) what...Ch. 8.15 - (a) Based on the phase diagram in Figure P8.61,...Ch. 8.15 - Referring to Figure P8.61. explain what happens as...Ch. 8.15 - Referring to Figure P8.61, (a) explain what...Ch. 8.15 - Using Figure P8.40, explain what the phase diagram...Ch. 8.15 - Using Figure P8.40. explain why, according to the...Ch. 8.15 - (a) In the TiAl phase diagram. Figure P8.42, what...Ch. 8.15 - Draw an approximate hypothetical phase diagram for...Ch. 8.15 - Draw the hypothetical phase diagram for a binary...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Material Science, Phase Diagrams, Part 1; Author: Welt der Werkstoffe;https://www.youtube.com/watch?v=G83ZaoB3XCc;License: Standard Youtube License