Modern Physics for Scientists and Engineers
Modern Physics for Scientists and Engineers
4th Edition
ISBN: 9781133103721
Author: Stephen T. Thornton, Andrew Rex
Publisher: Cengage Learning
Question
Book Icon
Chapter 4, Problem 3P
To determine

Show that electron’s velocity must be ve2vα in order to conserve energy and linear momentum.

Blurred answer
Students have asked these similar questions
In class, we derived the formula for the power radiated by an accelerating charge. The classical model of the Hydrogen atom treats the electron as a point charge moving in a circular orbit about the inertial proton. In its ground state, the kinetic energy of this electron is 13.6 eV, and it’s radius is equal to the Bohr radius a0 = 0.0529 nm. If this electron behaves classically, what fraction of its energy does it radiate per orbit? Per second?
Assuming that the radius of the circular path of the electron is 4.9cm when voltage is 100v and coil current is 1A and The Helmholtz coils have 130 turns and a radius of 15 cm. With N=130 and R=0.15   What is the velocity of the electrons at 100 V, assuming the known charge and mass of the electron from the accepted universal constants that are the basis of SI units? Hints:  Do a classical calculation of the kinetic of the electon assuming you know its mass (in kg) and its charge (in coulomb).  That will be 1/2 mv2.  Equate that to the energy of the electron gained by accelerating in the electric field, that is, eV where "e" is the charge and "V" is the difference potential in volts. Solve for "v", the velocity. Enter your answer in km/s, 103 m/s, without units.  It is best to enter only a number, without an "e".  For example, if you found 2000 m/s you would enter "2" for the velocity in km/s.  Electrons have low mass and achieve high velocity in modest fields.
a. Conceptually, discuss the particle-wave duality of light. Discuss the implications of this in combination with the de Broglie (pronounced “de Broy”) equation. b. The electron of a hydrogen atom is usually no further than 1.0 Å from the proton. We can therefore say the upper limit of the radius of an isolated hydrogen atom is roughly 1.0 Å. How does the de Broglie wavelength of the electron compare to this radius? (The velocity of an electron in the first principal energy level is about 2.2 x 106 m/s). Explain why wave-particle duality is so important for quantum mechanics, yet not required in macroscopic systems that are well described by classical mechanics. c. Comment as to whether neutrons with velocity 4.14 x 103 m/s may be used to determine structures of molecules in a diffraction-based experiment. You may consider the relevant distance between atoms in molecules to be on the order of 1 Å.
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Intro Spectroscopy
Physics
ISBN:9781305221796
Author:PAVIA
Publisher:Cengage
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning