Introduction to Algorithms
Introduction to Algorithms
3rd Edition
ISBN: 9780262033848
Author: Thomas H. Cormen, Ronald L. Rivest, Charles E. Leiserson, Clifford Stein
Publisher: MIT Press
Question
Book Icon
Chapter 34, Problem 3P

a.

Program Plan Intro

To give an efficient algorithm to determine a 2-coloring of a graph, if one exists.

b.

Program Plan Intro

To cast the graph coloring as a decision problem and to show that decision problem is solvable in polynomial time.

c.

Program Plan Intro

To show that 3-COLOR is NP-complete.

d.

Program Plan Intro

To argue that in any 3-coloring c of a graph containing the literal edges, exactly one of a variable and its negation is colored.

e.

Program Plan Intro

To argue that if each of x, y and z is colored true or false then the 3-widget is 3-colorable.

f.

Program Plan Intro

To complete the proof that 3-COLOR is NP-complete.

Blurred answer
Students have asked these similar questions
3) The graph k-coloring problem is stated as follows: Given an undirected graph G = (V,E) with N vertices and M edges and an integer k. Assign to each vertex v in Va color c(v) such that 1< c(v)
One can manually count path lengths in a graph using adjacency matrices. Using the simple example below, produces the following adjacency matrix: A B A 1 1 B 1 0 This matrix means that given two vertices A and B in the graph above, there is a connection from A back to itself, and a two-way connection from A to B. To count the number of paths of length one, or direct connections in the graph, all one must do is count the number of 1s in the graph, three in this case, represented in letter notation as AA, AB, and BA. AA means that the connection starts and ends at A, AB means it starts at A and ends at B, and so on. However, counting the number of two-hop paths is a little more involved. The possibilities are AAA, ABA, and BAB, AAB, and BAA, making a total of five 2-hop paths. The 3-hop paths starting from A would be AAAA, AAAB, AABA, ABAA, and ABAB. Starting from B, the 3-hop paths are BAAA, BAAB, and BABA. Altogether, that would be eight 3-hop paths within this graph. Write a program…
How do I do this?  We say a graph G = (V, E) has a k-coloring for some positive integer k if we can assign k different colors to vertices of G such that for every edge (v, w) ∈ E, the color of v is different to the color w. More formally, G = (V, E) has a k-coloring if there is a function f : V → {1, 2, . . . , k} such that for every (v, w) ∈ E, f(v) 6= f(w).3-Color problem is defined as follows: Given a graph G = (V, E), does it have a 3-coloring?4-Color problem is defined as follows: Given a graph G = (V, E), does it have a 4-coloring?Prove that 3-Color ≤P 4-Color.(hint: add vertex to 3-Color problem instance.)
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Database System Concepts
Computer Science
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:McGraw-Hill Education
Text book image
Starting Out with Python (4th Edition)
Computer Science
ISBN:9780134444321
Author:Tony Gaddis
Publisher:PEARSON
Text book image
Digital Fundamentals (11th Edition)
Computer Science
ISBN:9780132737968
Author:Thomas L. Floyd
Publisher:PEARSON
Text book image
C How to Program (8th Edition)
Computer Science
ISBN:9780133976892
Author:Paul J. Deitel, Harvey Deitel
Publisher:PEARSON
Text book image
Database Systems: Design, Implementation, & Manag...
Computer Science
ISBN:9781337627900
Author:Carlos Coronel, Steven Morris
Publisher:Cengage Learning
Text book image
Programmable Logic Controllers
Computer Science
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education