Stars and Galaxies
Stars and Galaxies
9th Edition
ISBN: 9781305120785
Author: Michael A. Seeds, Dana Backman
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 3, Problem 13P
To determine

The extend of prominence on the Sun’s disk during solar eclipses, whether the prominences can be seen if we use protective glasses.

Blurred answer
Students have asked these similar questions
Part 3 1. The diameter of the Sun is 1,391,400 km. The diameter of the Moon is 3,474.8 km. Find the ratio, r= Dsa/Dsvan between the sizes. 2. From the point of view of an obs erver on Eanth (consider the Earth as a point-like object), during the eclipse, the Moon covers the Sun exactly. Sketch a picture to illustrate this fact. Use a nuler to get a straight line. Your drawing does not need to be in scale. 3. The Sun is 1 Astronomical Unit (AU) away from the Earth. Find the distance between the Earth and the Moon in AU's using the ratio of similar triangles. Show your work. DEM= AU. Convert this to kilometers. Use 1 AU = 149,600,000 km. DEM = km.
I am trying to plot the ground tracks of an orbit. But I am having a problem with finding the longitude. The equation for the longitude is shown in the image. Is the Theta GMST initially zero because the greenwich meridian points to the Aries point (x-axis). How do you calculate alpha or vernal equinox? I saw a formula for alpha which is alpha = arctan(ry/rx), but the formula was for Right Ascension angle. Is the right ascension angle the same as vernal equinox. If not, then what is the formula for vernal equinox.
Next you will (1) convert your measurement of the semi-major axis from arcseconds to AU, (2) convert your measurement of the period from days to years, and (3) calculate the mass of the planet using Newton's form of Kepler's Third Law. Use Stellarium to find the distance to the planet when Skynet took any of your images, in AU. Answer: 4.322 AU Use this equation to determine a conversion factor from 1 arcsecond to AU at the planet's distance. You will need to convert ? = 1 arcsecond to degrees first. Answer: 2.096e-5 AU (2 x 3.14 x 4.322 x (.000278/360) = 2.096e-5) Next, use this number to convert your measurement of the moon's orbital semi-major axis from arcseconds to AU. A) Calculate a in AU.    B) Convert your measurement of the moon's orbital period from days to years.   C) By Newton's form of Kepler's third law, calculate the mass of the planet. D) Finally, convert the planet's mass to Earth masses: 1 solar mass = 333,000 Earth masses.
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Text book image
The Solar System
Physics
ISBN:9781337672252
Author:The Solar System
Publisher:Cengage
Text book image
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Text book image
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Text book image
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Text book image
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning