Fundamentals of Heat and Mass Transfer
Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470501979
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 10, Problem 10.76P

A thin-walled cylindrical container of diameter D and height L is filled to a height y with a low boiling point liquid (A) at T sat,A . The container is located in a large chamber filled with the vapor of a high boiling point fluid (B). Vapor-B condenses into a laminar film on the outer surface of the cylindrical container, extending from the location of the liquid-A free surface. The condensation process sustains nucleate boiling in liquid-A along the container wall according to the relation q = C ( T s T sat ) 3 , where C is a known empirical constant.

Chapter 10, Problem 10.76P, A thin-walled cylindrical container of diameter D and height L is filled to a height y with a low
(a) For the portion of the wall covered with the condensate film, derive an equation for the average temperature of the container wall, T s . Assume that the properties of fluids A and B are known.
(b) At what rate is heat supplied to liquid-A?
(c) Assuming the container is initially filled completely with liquid, that is, y = L , derive an expression for the time required to evaporate all the liquid in the container.

Blurred answer
Students have asked these similar questions
AH of vaporization of water is 439.2 cal/g at the normal boing point. Since virus can survive at 404.39 K by forming spores. Most virus spores die at 851.9 K. Hence, autoclaves used to sterilize medical and laboratory instruments are pressurized to raise the boiling point of water to 851.9 K. Find out at what InP (torr) does water boil at 851.9 K? O a. 8460.435 O b. 940.048 c. 1880.097 O d. 2.474
Saturated, pure steam at a temperature of 170 °C condenses on the outer surface of a vertical tube of outer diameter 2 cm and length 1.5 m. The tube surface is maintained at a uniform temperature of 150 °C. Calculate: a) the local film condensation heat-transfer coefficient at the bottom of the tube.
Saturated, pure steam at a temperature of 170 °C condenses on the outer surface of a vertical tube of outer diameter 2 cm and length 1.5 m. The tube surface is maintained at a uniform temperature of 150 °C. Calculate: a) the local film condensation heat-transfer coefficient at the bottom of the tube. b) the average condensation heat-transfer coefficient over the entire length of the tube. c) the total condensation rate at the tube surface.

Chapter 10 Solutions

Fundamentals of Heat and Mass Transfer

Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Explanation of Solidification of Metals & Alloys | Manufacturing Processes; Author: Magic Marks;https://www.youtube.com/watch?v=G5z9KknF_s8;License: Standard Youtube License