Fundamentals of Heat and Mass Transfer
Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470501979
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
bartleby

Videos

Question
Book Icon
Chapter 10, Problem 10.61P

(a)

To determine

The condensation rate per unit tube length.

(b)

To determine

The options available for increasing the condensation rate.

Blurred answer
Students have asked these similar questions
Saturated, pure steam at a temperature of 170 °C condenses on the outer surface of a vertical tube of outer diameter 2 cm and length 1.5 m. The tube surface is maintained at a uniform temperature of 150 °C. Calculate: a) the local film condensation heat-transfer coefficient at the bottom of the tube. b) the average condensation heat-transfer coefficient over the entire length of the tube. c) the total condensation rate at the tube surface.
Analyze the condensation process using both chillers. Provide operating temperatures and pressures entering each component shown in the diagram (at points 1, 2, 3, 4). Indicate which chiller should be chosen based on the economics. See below for details: -Your work is replacing a chiller that is used as part of a distillation process that condenses methanol (boiling point = 65 °C). Your task is to select the most economical type of system. A conventional chiller will have a lower first cost and will have lower maintenance costs than one that involves enhanced heat transfer surfaces, but the chiller with enhanced surfaces will condense the same amount of alcohol with a lower energy consumption. Select the appropriate chiller by considering the net present value of both systems. That value will involve the first cost of the chiller, and the present value of the maintenance and energy costs.  The chiller uses a standard vapor-compression refrigeration cycle with R-22 (see Figure 1). For…
Question 3 This question requires the use of the steam property tables (Rogers and Mayhew) uploaded on QM+ exam section. All properties should be evaluated at the temperature of the steam. Saturated, pure steam at a temperature of 170 °C condenses on the outer surface of a vertical tube of outer diameter 2 cm and length 1.5 m. The tube surface is maintained at a uniform temperature of 150 °C. Calculate: the local film condensation heat-transfer coefficient at the bottom of the tube. a)

Chapter 10 Solutions

Fundamentals of Heat and Mass Transfer

Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Unit Conversion the Easy Way (Dimensional Analysis); Author: ketzbook;https://www.youtube.com/watch?v=HRe1mire4Gc;License: Standard YouTube License, CC-BY