Electric machinery fundamentals
Electric machinery fundamentals
5th Edition
ISBN: 9780073529547
Author: Chapman, Stephen J.
Publisher: MCGRAW-HILL HIGHER EDUCATION
Question
Book Icon
Chapter 1, Problem 1.12P
To determine

To find: The flux produced in the core by the specified current. Also, the relative permeability of the given core.

To check: Whether the assumption for the relative permeability is good or not for the given conditions. Also, whether this assumption in general is good or not.

Blurred answer
Students have asked these similar questions
ferromagnetic core is shown in Figure P1-2. The depth of the core is 5 cm. The other dimensions of the core are as shown in the figure. Find the value of the current that will produce a flux of 0.005 Wb. With this current, what is the flux density at the top of the core? What is the flux density at the right side of the core? Assume that the relative permeability of the core is 800. -10cm- -20 cm- 500 turns a. 670 kA t/Wb b. 330 kA t/Wb c. 500 kA t/Wb d. 256 kA t/Wb Core depth = 5 cm 15cm + 15cm 15cm 5 E
A ferromagnetic core is shown in Figure Pl-2. The depth of the core is 5 cm. The other dimensions of the core are as shown in the figure. Find the value of the current that will produce a flux of 0.005 Wb. With this current, what is the flux density at the top of the core? What is the flux density at the right side of the core? Assume that the relative permeability of the core is 800. 1-5. 10 cm- 5em 20 em 15 cm 15 cm 15 cm Coe depth - Scm SOLUTION There are three regions in this core. The top and bottom form one region, the left side forms a second region, and the right side forms a third region. If we assume that the mean path length of the flux is in the center of each leg of the core, and if we ignore spreading at the corners of the core, then the path lengths are I, = 2(27.5 cm) = 55 cm, I, = 30 cm, and /, = 30 cm. The reluctances of these regions are:
Question 1 A ferromagnetic core is shown in Figure 1. The depth of the core is 5 cm. The other dimensions of the core are as shown in the figure. a) Find the value of the current that will produce a flux of 0.005 Wb. b) With this current, what is the flux density at the top of the core? c) What is the flux density at the right side of the core? Assume that the relative permeability of the core is 1000. cm -10 cm-- 20 cm 15 cm 500 turns 15 cm 15 cm Core depth 5 cm Figure 1

Chapter 1 Solutions

Electric machinery fundamentals

Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Power System Analysis and Design (MindTap Course ...
Electrical Engineering
ISBN:9781305632134
Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher:Cengage Learning