Modern Physics
Modern Physics
2nd Edition
ISBN: 9780805303087
Author: Randy Harris
Publisher: Addison Wesley
Question
Book Icon
Chapter 8, Problem 37E

(a)

To determine

The multiplicative constant which normalizes symmetric and anti-symmetric function

(b)

To determine

The value of A that will give the vector unit length

(c)

To determine

To discuss:The relation in answer of part (a) and part (b)

Blurred answer
Students have asked these similar questions
(a) What is the separation in energy between the lowest two energy levels for a container 20 cm on a side containing argon atoms? Assume, for simplicity, that the argon atoms are trapped in a one-dimensional well 20 cm wide. The molar mass of argon is 39.9 g/mol. (b) At 300 K, to the nearest power of ten, what is the ratio of the thermal energy of the atoms to this energy separation? (c) At what temperature does the thermal energy equal the energy separation?
An electron is confined to a one-dimensional infinite well 0.1 nm. wide. (a) Determine the deBroglie wavelength of the electron in the ground state. (b) What is the electron’s minimum kinetic energy? (c) What is the energy of the first excited state? (d) What energy is required to excite the electron from the ground state to the first excited state? (e) What wavelength photon would be emitted if the system were to de-excite from the first excited state to the ground state.
∆E ∆t ≥ ħTime is a parameter, not an observable. ∆t is some timescale over which the expectation value of an operator changes. For example, an electron's angular momentum in a hydrogen atom decays from 2p to 1s. These decays are relativistic, however the uncertainty principle is still valid, and we can use it to estimate uncertainties. ∆E doesn't change in time, so when an excited state decays to the ground state (infinite lifetime, so no energy uncertainty), the energy uncertainty has to go somewhere. Usually, it’s in the frequency of a photon giving a width (through E = hν) to the transition line in an spectroscopy experiment. The linewidth of the 2p state in 9Be+ is 19.4 MHz. What is its lifetime? (Note: in the relativistic atom–photon system, the Hamiltonian is independent of time and both energy and its uncertainty are conserved.)

Chapter 8 Solutions

Modern Physics

Ch. 8 - Prob. 11CQCh. 8 - Prob. 12CQCh. 8 - Prob. 13CQCh. 8 - Prob. 14CQCh. 8 - Prob. 15CQCh. 8 - Lithium is chemically reactive. What if electrons...Ch. 8 - Prob. 17CQCh. 8 - Prob. 18CQCh. 8 - Prob. 19CQCh. 8 - Prob. 20CQCh. 8 - Prob. 21CQCh. 8 - Prob. 22CQCh. 8 - Prob. 23CQCh. 8 - The total-spin singlet state for two electrons has...Ch. 8 - Prob. 25ECh. 8 - Prob. 26ECh. 8 - Show that the frequency at which an electron’s...Ch. 8 - Prob. 28ECh. 8 - Prob. 29ECh. 8 - Prob. 30ECh. 8 - Prob. 31ECh. 8 - Prob. 33ECh. 8 - Prob. 34ECh. 8 - Prob. 35ECh. 8 - Prob. 36ECh. 8 - Prob. 37ECh. 8 - Prob. 38ECh. 8 - Prob. 39ECh. 8 - Prob. 41ECh. 8 - Prob. 42ECh. 8 - The Slater determinant is introduced in Exercise...Ch. 8 - Prob. 44ECh. 8 - Exercise 44 gives an antisymmetricmultiparticle...Ch. 8 - Prob. 46ECh. 8 - Prob. 48ECh. 8 - Write the electronic configurations for...Ch. 8 - Prob. 50ECh. 8 - Prob. 51ECh. 8 - Prob. 52ECh. 8 - Prob. 53ECh. 8 - Prob. 54ECh. 8 - Prob. 55ECh. 8 - Prob. 56ECh. 8 - Prob. 57ECh. 8 - Prob. 58ECh. 8 - Prob. 59ECh. 8 - The well-known sodium doublet is two yellow...Ch. 8 - Prob. 61ECh. 8 - Prob. 62ECh. 8 - Prob. 64ECh. 8 - Prob. 65ECh. 8 - Prob. 66ECh. 8 - Prob. 67ECh. 8 - Prob. 68ECh. 8 - Prob. 69ECh. 8 - Prob. 70ECh. 8 - Repeat Example 8.6, but assume that the upper...Ch. 8 - Prob. 72ECh. 8 - Prob. 73ECh. 8 - Prob. 74ECh. 8 - Using J2=L2+S2+2LS to eliminate LS , as well as...Ch. 8 - A hydrogen atom is subjected to a magnetic field...Ch. 8 - Prob. 77ECh. 8 - Prob. 78ECh. 8 - Prob. 79ECh. 8 - Prob. 80ECh. 8 - Prob. 81ECh. 8 - As is done for helium in Table 8.3, determine for...Ch. 8 - Prob. 83CECh. 8 - Prob. 84CECh. 8 - Prob. 85CE
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning