Modern Physics
Modern Physics
2nd Edition
ISBN: 9780805303087
Author: Randy Harris
Publisher: Addison Wesley
Question
Book Icon
Chapter 4, Problem 53E

(a)

To determine

The reason why the energy of the particle cannot be to zero.

(b)

To determine

The reasonable assumption about typical value of momentum and find the particle’s minimum possible energy.

Blurred answer
Students have asked these similar questions
(d) Prove that for a classical particle moving from left to right in a box with constant speed v, the average position = (1/T) ff x(t) dt = L/2, where T L/v is the time taken to move from left to right. And = : (1/T) S²x² (t) dt L²/3. Hint: Only consider a particle moving from left x = 0 to right x = L = and do not include the bouncing motion from right to left. The results for left to right are independent of the sense of motion and therefore the same results apply to all the bounces, so that we can prove it for just one sense of motion. Thus, the classical result is obtained from the Quantum solution when n >> 1. That is, for large energies compared to the minimum energy of the wave-particle system. This is usually referred to as the Classical Limit for Large Quantum Numbers.
= = An electron having total energy E 4.60 eV approaches a rectangular energy barrier with U■5.10 eV and L-950 pm as shown in the figure below. Classically, the electron cannot pass through the barrier because E < U. Quantum-mechanically, however, the probability of tunneling is not zero. Energy E U 0 i (a) Calculate this probability, which is the transmission coefficient. (Use 9.11 x 10-31 kg for the mass of an electron, 1.055 x 10-34] s for h, and note that there are 1.60 x 10-19 J per eV.) (b) To what value would the width L of the potential barrier have to be increased for the chance of an incident 4.60-eV electron tunneling through the barrier to be one in one million? nm
For ultrarelativistic particles such as photons or high-energy electrons, the relation between energy and momentum is not E = p2/2m but rather E = pc. (This formula is valid for massless particles, and also for massive particles in the limit E » mc2.) Estimate the minimum energy of an electron confined inside a box of width 10-15 m. It was once thought that atomic nuclei might contain electrons; explain why this would be very unlikely.
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax