Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 27, Problem 2P

Young’s double-slit experiment underlies the instrument landing system used to guide aircraft to safe landings at some airports when the visibility is poor. Although real systems are more complicated than the example described here, they operate on the same principles. A pilot is trying to align her plane with a runway as suggested in Figure P27.2. Two radio antennas (the black dots in the figure) are positioned adjacent to the runway, separated by d = 40.0 m. The antennas broadcast unmodulated coherent radio waves at 30.0 MHz. The red lines in Figure P27.2 represent paths along which maxima in the interference pattern of the radio waves exist. (a) Find the wavelength of the waves. The pilot “locks onto” the strong signal radiated along an interference maximum and steers the plane to keep the received signal strong. If she has found the central maximum, the plane will have precisely the correct heading to land when it reaches the runway as exhibited by plane A. (b) What If? Suppose the plane is flying along the first side maximum instead as is the case for plane B. How far to the side of the runway centerline will the plane be when it is 2.00 km from the antennas, measured along its direction of travel? (c) It is possible to tell the pilot that she is on the wrong maximum by sending out two signals from each antenna and equipping the aircraft with a two-channel receiver. The ratio of the two frequencies must not be the ratio of small integers (such as 3 4 ). Explain how this two-frequency system would work and why it would not necessarily work if the frequencies were related by an integer ratio.

Chapter 27, Problem 2P, Youngs double-slit experiment underlies the instrument landing system used to guide aircraft to safe

Blurred answer
Students have asked these similar questions
The pupil of an eagle's eye has a diameter of 6.0 mm. Two field mice are separated by 0.010 m. From a distance of 166 m, the eagle sees them as one unresolved object and dives toward them at a speed of 24 m/s. Assume that the eagle's eye detects light that has a wavelength of 550 nm in vacuum. How much time passes until the eagle sees the mice as separate objects? t= i eTextbook and Media
Often in optics scientists take advantage of effects that require very high intensity light. To get the desired effect a scientist uses a laser with power P = 0.0015 W to reach an intensity of I = 350 W/cm2 by focusing it through a lens of focal length f = 0.15 m. The beam has a radius of r = 0.0011 m when it enters the lens.Randomized VariablesP = 0.0015 WI = 350 W/cm2f = 0.15 mr = 0.0011 m  Part (a)  Express the radius of the beam, rp, at the point where it reaches the desired intensity in terms of the given quantities. (In other words, what radius does the beam have to have after passing through the lens in order to have the desired intensity?)   Part (b)  Give an expression for the tangent of the angle that the edge of the beam exits the lens with with respect to the normal to the lens surface, in terms of r and f?    Part (c)  Express the distance, D, between the lens's focal point and the illuminated object using tan(α) and rp.    Part (d)  Find the distance, D, in centimeters.
The pupil of an eagle's eye has a diameter of 6.0 mm. Two field mice are separated by 0.010 m. From a distance of 197 m, the eagle sees them as one unresolved object and dives toward them at a speed of 20 m/s. Assume that the eagle's eye detects light that has a wavelength of 550 nm in vacuum. How much time passes until the eagle sees the mice as separate objects? t= i

Chapter 27 Solutions

Principles of Physics: A Calculus-Based Text

Ch. 27 - Prob. 5OQCh. 27 - Prob. 6OQCh. 27 - A monochromatic beam of light of wavelength 500 nm...Ch. 27 - A film of oil on a puddle in a parking lot shows a...Ch. 27 - Prob. 9OQCh. 27 - A Fraunhofer diffraction pattern is produced on a...Ch. 27 - Prob. 11OQCh. 27 - Prob. 12OQCh. 27 - Why is it advantageous to use a large-diameter...Ch. 27 - Prob. 1CQCh. 27 - Prob. 2CQCh. 27 - Prob. 3CQCh. 27 - Prob. 4CQCh. 27 - Why is the lens on a good-quality camera coated...Ch. 27 - Prob. 6CQCh. 27 - Prob. 7CQCh. 27 - Prob. 8CQCh. 27 - A laser beam is incident at a shallow angle on a...Ch. 27 - Prob. 10CQCh. 27 - Prob. 11CQCh. 27 - Prob. 12CQCh. 27 - John William Strutt, Lord Rayleigh (1842–1919),...Ch. 27 - Prob. 1PCh. 27 - Youngs double-slit experiment underlies the...Ch. 27 - Two radio antennas separated by d = 300 m as shown...Ch. 27 - Prob. 4PCh. 27 - Prob. 5PCh. 27 - Prob. 6PCh. 27 - In Figure P27.7 (not to scale), let L = 1.20 m and...Ch. 27 - Prob. 8PCh. 27 - Prob. 9PCh. 27 - Prob. 10PCh. 27 - Two slits are separated by 0.180 mm. An...Ch. 27 - Prob. 12PCh. 27 - A pair of narrow, parallel slits separated by...Ch. 27 - Coherent light rays of wavelength strike a pair...Ch. 27 - Prob. 15PCh. 27 - Prob. 16PCh. 27 - A riverside warehouse has several small doors...Ch. 27 - Prob. 18PCh. 27 - Prob. 19PCh. 27 - Astronomers observe the chromosphere of the Sun...Ch. 27 - Prob. 21PCh. 27 - Prob. 22PCh. 27 - A beam of 580-nm light passes through two closely...Ch. 27 - Prob. 24PCh. 27 - An air wedge is formed between two glass plates...Ch. 27 - Prob. 26PCh. 27 - Prob. 27PCh. 27 - Prob. 28PCh. 27 - Prob. 29PCh. 27 - Prob. 30PCh. 27 - Prob. 31PCh. 27 - Prob. 32PCh. 27 - A beam of monochromatic green light is diffracted...Ch. 27 - Prob. 34PCh. 27 - Prob. 35PCh. 27 - Prob. 36PCh. 27 - Prob. 37PCh. 27 - Prob. 38PCh. 27 - Prob. 39PCh. 27 - White light is spread out into its spectral...Ch. 27 - Prob. 41PCh. 27 - Prob. 42PCh. 27 - Prob. 43PCh. 27 - Prob. 44PCh. 27 - Prob. 45PCh. 27 - Prob. 46PCh. 27 - Prob. 47PCh. 27 - Prob. 48PCh. 27 - Prob. 49PCh. 27 - Prob. 50PCh. 27 - Prob. 51PCh. 27 - A wide beam of laser light with a wavelength of...Ch. 27 - Prob. 53PCh. 27 - Prob. 54PCh. 27 - Prob. 55PCh. 27 - Prob. 56PCh. 27 - Prob. 57PCh. 27 - Prob. 58PCh. 27 - Prob. 59PCh. 27 - Prob. 60PCh. 27 - Prob. 61PCh. 27 - Prob. 62PCh. 27 - Both sides of a uniform film that has index of...Ch. 27 - Prob. 64PCh. 27 - Light of wavelength 500 nm is incident normally on...Ch. 27 - Prob. 66PCh. 27 - A beam of bright red light of wavelength 654 nm...Ch. 27 - Iridescent peacock feathers are shown in Figure...Ch. 27 - Prob. 69PCh. 27 - Prob. 70PCh. 27 - Figure CQ27.4 shows an unbroken soap film in a...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Spectra Interference: Crash Course Physics #40; Author: CrashCourse;https://www.youtube.com/watch?v=-ob7foUzXaY;License: Standard YouTube License, CC-BY