Fundamentals of Heat and Mass Transfer
Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470501979
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 12, Problem 12.96P

One scheme for extending the operation of gas turbine blades to higher temperatures involves applying a ceramic coating to the surfaces of blades fabricated from a superalloy such as inconel. To assess the reliability of such coatings, an apparatus has been developed for testing samples under laboratory conditions. The sample is placed at the bottom of a large vacuum chamber whose walls are cryogenically cooled and which is equipped with a radiation detector at the top surface. The detector has a surface area of A d = 10 5 m 2 ,Is locate data distance of L s d = 1 m from the sample, and views radiation originating from a portion of the ceramic surface having an area of Δ A c = 10 4 m 2 . An electric heater attached to the bot- tom of the sample dissipates a uniform heat flux, q h " , which is transferred upward through the sample. The bottom of the heater and sides of the sample are well insulated.

Chapter 12, Problem 12.96P, One scheme for extending the operation of gas turbine blades to higher temperatures involves

Consider conditions for which a ceramic coating of thickness L c = 0.5 m m and thermal conductivity K c = 6 W / m k has been sprayed on a metal substrate of thickness L s = 8 m m and thermal conductivity K s = 25 W / m k . The opaque surface of the ceramic may be approximated as diffuse and gray, with a total, hemi- spherical emissivity of ε c = 0.8 .

(a) Consider steady-state conditions for which the bottom surface of the substrate is maintained at T 1 = 1500 K , while the chamber walls (including the surface of the radiation detector) are maintained at T w = 90 K . Assuming negligible thermal contact resistance at the ceramic−substrate inter- face, determine the ceramic top surface temperature T 2 and the heat flux q h " .

(b) For the prescribed conditions, what is the rate at which radiation emitted by the ceramic is intercepted by the detector?

(c) After repeated experiments, numerous cracks develop at the ceramic−substrate interface, creating an interfacial thermal contact resistance. If T w and q h " are maintained at the conditions associated with part (a), will T 1 increase, decrease, or remain the same? Similarly, will T 2 increase, decrease, or remain the same? In each case, justify your answer.

Blurred answer
Students have asked these similar questions
A small sphere (emissivity = 0.745, radius = r1) is located at the center of a spherical asbestos shell (thickness = 1.72 cm, outer radius = r2; thermal conductivity of asbestos is 0.090 J/(s m Co)). The thickness of the shell is small compared to the inner and outer radii of the shell. The temperature of the small sphere is 727 °C, while the temperature of the inner surface of the shell is 406 °C, both temperatures remaining constant. Assuming that r2/r1 = 6.54 and ignoring any air inside the shell, find the temperature in degrees Celsius of the outer surface of the shell.
An electric heating system is installed in the ceiling of a room 5 m (length) × 5 m (width) ×2.5 m (height). The temperature of the ceiling is 315 K whereas under equilibrium conditions the walls are at 295 K. If the floor is non-sensitive to radiations and the emissivities of the ceiling and wall are 0.75 and 0.65, respectively. Calculate the radiant heat loss from the ceiling to the walls. The answer should be 1595 W. Please show steps in your solution
Consider a silicon wafer positioned in a furnace that is zone-heated on the top section and cooled on the lower section. The wafer is placed such that the top and bottom surfaces of the wafer exchange radiation with the hot and cold zones respectively of the furnace. The zone temperatures are Tsur,h = 950 K and Tsur.c = 330 K. The emissivity and thickness of the wafer are e = 0.65 and d = 0.78 mm, respectively. With the ambient gas at T = 700 K, convection heat transfer coefficients at the upper and lower surfaces of the wafer are 8 and 4 W/m2-K. Find the steady-state temperature of the wafer, in K. i K Save for Later

Chapter 12 Solutions

Fundamentals of Heat and Mass Transfer

Ch. 12 - Determine the fraction of the total, hemispherical...Ch. 12 - The spectral distribution of the radiation emitted...Ch. 12 - Consider a 5-mm-square, diffuse surface A0 having...Ch. 12 - Assuming blackbody behavior, determine the...Ch. 12 - The dark surface of a ceramic stove top may be...Ch. 12 - The energy flux associated with solar radiation...Ch. 12 - A small flat plate is positioned just beyond the...Ch. 12 - A spherical aluminum shell of inside diameter D=2m...Ch. 12 - The extremely high temperatures needed to trigger...Ch. 12 - An enclosure has an inside area of 100m2 , and its...Ch. 12 - Assuming the earth’s surface is black, estimate...Ch. 12 - A proposed method for generating electricity from...Ch. 12 - Approximations to Planck’s law for the spectral...Ch. 12 - Estimate the wavelength corresponding to maximum...Ch. 12 - A furnace with a long, isothermal, graphite tube...Ch. 12 - Isothermal furnaces with small apertures...Ch. 12 - For materials A and B, whose spectral...Ch. 12 - A small metal object, initially at Ti=1000K ,is...Ch. 12 - The directional total emissivity of nonmetallic...Ch. 12 - Consider the metallic surface of Example 12.7....Ch. 12 - The spectral, directional emissivity of a diffuse...Ch. 12 - Consider the directionally selective surface...Ch. 12 - A sphere is suspended in air in a dark room and...Ch. 12 - Estimate the total, hemispherical emissivity for...Ch. 12 - Sheet steel emerging from the hot roll section of...Ch. 12 - A large body of nonluminous gas at a temperature...Ch. 12 - An opaque surface with the prescribed spectral,...Ch. 12 - The spectral reflectivity distribution for white...Ch. 12 - A diffuse, opaque surface at 700 K has spectral...Ch. 12 - The spectral, hemispherical absorptivity of an...Ch. 12 - The spectral, hemispherical absorptivity of an...Ch. 12 - Consider an opaque, diffuse surface for which the...Ch. 12 - Radiation leaves a furnace of inside surface...Ch. 12 - The spectral transmissivity of a 1-mm-thick layer...Ch. 12 - The spectral transmissivity of plain and tinted...Ch. 12 - Referring to the distribution of the spectral...Ch. 12 - The spectral absorptivity and spectral...Ch. 12 - Consider a large furnace with opaque, diffuse,...Ch. 12 - Four diffuse surfaces having the spectral...Ch. 12 - The spectral transmissivity of a 50m -thick...Ch. 12 - An opaque, horizontal plate has a thickness of...Ch. 12 - Two small surfaces, A and B, are placed inside an...Ch. 12 - Consider an opaque, diffuse surface whose spectral...Ch. 12 - The 50-mm peephole of a large furnace operating at...Ch. 12 - The window of a large vacuum chamber is fabricated...Ch. 12 - A thermograph is a device responding to the...Ch. 12 - A radiation thermometer is a radiometer calibrated...Ch. 12 - A radiation detector has an aperture of area...Ch. 12 - A small anodized aluminum block at 35C is heated...Ch. 12 - Consider the diffuse, gray opaque disk A1 , which...Ch. 12 - A two-color pyrometer is a device that is used to...Ch. 12 - An apparatus commonly used for measuring the...Ch. 12 - A procedure for measuring the thermal conductivity...Ch. 12 - One scheme for extending the operation of gas...Ch. 12 - The equipment for heating a wafer during a...Ch. 12 - Neglecting the effects of radiation absorption,...Ch. 12 - Consider the evacuated tube solar collector...Ch. 12 - Solar flux of 900W/m2 is incident on the top side...Ch. 12 - Consider an opaque, gray surface whose directional...Ch. 12 - A contractor must select a roof covering material...Ch. 12 - It is not uncommon for the night sky temperature...Ch. 12 - Plant leaves possess small channels that connect...Ch. 12 - In the central receiver concept of solar energy...Ch. 12 - Radiation from the atmosphere or sky can be...Ch. 12 - A thin sheet of glass is used on the roof of a...Ch. 12 - Growers use giant fans to prevent grapes from...Ch. 12 - A circular metal disk having a diameter of 0.4 m...Ch. 12 - The neighborhood cat likes to sleep on the roof of...Ch. 12 - The exposed surface of a power amplifier for an...Ch. 12 - Consider a thin opaque, horizontal plate with an...Ch. 12 - The oxidized-aluminum wing of an aircraft has a...Ch. 12 - Two plates, one with a black painted surface and...Ch. 12 - A radiator on a proposed satellite solar power...Ch. 12 - A radiator on a proposed satellite solar power...Ch. 12 - A spherical satellite in near-earth orbit is...Ch. 12 - An annular fin of thickness t is used as a...Ch. 12 - The directional absorptivity of a gray surface...Ch. 12 - Two special coatings are available for application...Ch. 12 - Consider the spherical satellite of Problem...Ch. 12 - A spherical capsule of 3-m radius is fired from a...Ch. 12 - Consider the spherical satellite of Problem...Ch. 12 - A solar panel mounted on a spacecraft has an area...Ch. 12 - It is known that on clear nights a thin layer of...Ch. 12 - A shallow layer of water is exposed to the natural...Ch. 12 - A roof-cooling system, which operates by...Ch. 12 - A wet towel hangs on a clothes line under...Ch. 12 - Our students perform a laboratory experiment to...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Thermal Radiation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=FDmYCI_xYlA;License: Standard youtube license