A 30 m-long precast concrete pile with diameter of 0.4 m in driven in to a thick dry sand layer. The unit weight of the sand is 17 kN/m³. The sand is cohesionless and has an effective friction angle of 36°. Estimate the ultimate bearing capacity by using Coyle and Castello's method for both side point bearing resistance and side resistance.

Principles of Foundation Engineering (MindTap Course List)
9th Edition
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Braja M. Das, Nagaratnam Sivakugan
Chapter12: Pile Foundations
Section: Chapter Questions
Problem 12.2P: A 20 m long concrete pile is shown in Figure P12.2. Estimate the ultimate point load Qp by a....
icon
Related questions
Question
100%

I need detailed explanation solving this problem from Foundation, please.

9net(u) = quq = 5.14c1+ (1+0.4²)
General bearing capacity equation qu= c'NcFesFcaFci + q'NaFas FaaFai +0.5yBNyFysFya Fyi
Shape factors by De Depth factors by Hansen (1970)
Beer (1970)
B No
Fcs = 1+ N
Fas = 1 +
Fys
0
1
2
3
4
5
6
7
8
9
10
B
= 10.4(
Ne
5.14
5.38
5.63
5.90
6.19
6.49
6.81
7.16
7.53
7.92
8.35
tan o'
0.195B
L
TABLE 6.2 Bearing Capacity Factors From Eqs. (6.30), (6.29), and (6.31)
N₁
Na
1.00
2.71
1.09
2.97
1.20
3.26
1.31
3.59
1.43
3.94
1.57
4.34
1.72
1.88
2.06
2.25
2.47
Ne
16.88
18.05
19.32
20.72
22.25
23.94
25.80
27.86
30.14
32.67
35.49
38.64
42.16
46.12
50.59
Fad = 1 + 2 tano (1 — sin y)²:
qd
B
Fyd = 1
Fcd = 1 + 0.4(
Ny
0.00
0.07
0.15
0.24
0.34
0.45
0.57
0.71
0.86
1.03
1.22
7.13
8.20
9.44
10.88
12.54
14.47
16.72
19.34
22.40
25.99
30.22
35.19
41.06
48.03
56.31
=
11
12
13
14
15
16
17
18
19
20
21
TABLE 6.2 Bearing Capacity Factors From Eqs. (6.30), (6.29), and (6.31) (Continued)
φ'
Na
$'
Na
22
7.82
42.92
23
8.66
48.93
24
9.60
55.96
25
10.66
64.20
26
11.85
73.90
27
13.20
85.38
28
14.72
99.02
29
16.44
115.31
30
18.40
134.88
31
20.63
158.51
32
23.18
187.21
33
26.09
222.31
34
29.44
265.51
35
33.30
319.07
36
37.75
37
38
39
40
41
42
43
44
45
46
47
48
49
50
Ne
8.80
9.28
9.81
10.37
10.98
11.63
12.34
13.10
13.93
14.83
15.82
For saturated clay: p
For a method: fav = acu
For method: f = (₁ +2c₂)
Ne
55.63
61.35
67.87
75.31
83.86
93.71
105.11
118.37
133.88
152.10
173.64
199.26
229.93
266.89
Apqp = ApCu Nc
4.77
5.26
5.80
6.40
7.07
Ny
1.44
1.69
1.97
2.29
2.65
3.06
3.53
4.07
4.68
5.39
6.20
(continued)
Ny
66.19
78.03
92.25
109.41
130.22
155.55
186.54
224.64
271.76
330.35
403.67
496.01
613.16
762.89
Inclination
factors
by
Meyerhof (1963) and Hanna
and Meyerhof (1981)
Fci = Fai = (1-2
Fyi = (1 - B²
Bº
Ne 9 for p = 0
TABLE 12.10 Variation of A with Pile
Embedment Length, L
Embedment
length, L (m)
0
5
10
15
20
25
30
35
40
50
60
70
80
90
Coyle and Castello (1981):
Embedment ratio, L/D
0
10
20
30
40
50
60
70
Qp = q'N₁ Ap
10
T
T
T
T
T
e
$'
Bearing capacity factor, N
20
32° 36°
= 30°
34°
λ
0.5
0.336
0.245
0.200
0.173
0.150
0.136
0.132
0.127
0.118
0.113
0.110
0.110
0.110
38°
TABLE 12.11 Variation of a (Interpo-
lated Values Based on
Terzaghi et al., 1996)
40°
Cu
Pa
≤0.1
0.2
0.3
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.4
2.8
40 60 80 100 200
Note:
Pa
≈100 kN/m²
Qs
= atmospheric pressure
Embedment ratio, L/D
=
: (Ko'tan 8')pL
0.15 0.2
0
5
10
15
20
25
30
a
35
36
1.00
0.92
0.82
0.74
0.62
0.54
0.48
0.42
0.40
0.38
0.36
0.35
0.34
0.34
Earth pressure coefficient, K
1.0
$'
30°
31°
32°
33°
8=0.80'
2
34°
35⁰
36°
5
Transcribed Image Text:9net(u) = quq = 5.14c1+ (1+0.4²) General bearing capacity equation qu= c'NcFesFcaFci + q'NaFas FaaFai +0.5yBNyFysFya Fyi Shape factors by De Depth factors by Hansen (1970) Beer (1970) B No Fcs = 1+ N Fas = 1 + Fys 0 1 2 3 4 5 6 7 8 9 10 B = 10.4( Ne 5.14 5.38 5.63 5.90 6.19 6.49 6.81 7.16 7.53 7.92 8.35 tan o' 0.195B L TABLE 6.2 Bearing Capacity Factors From Eqs. (6.30), (6.29), and (6.31) N₁ Na 1.00 2.71 1.09 2.97 1.20 3.26 1.31 3.59 1.43 3.94 1.57 4.34 1.72 1.88 2.06 2.25 2.47 Ne 16.88 18.05 19.32 20.72 22.25 23.94 25.80 27.86 30.14 32.67 35.49 38.64 42.16 46.12 50.59 Fad = 1 + 2 tano (1 — sin y)²: qd B Fyd = 1 Fcd = 1 + 0.4( Ny 0.00 0.07 0.15 0.24 0.34 0.45 0.57 0.71 0.86 1.03 1.22 7.13 8.20 9.44 10.88 12.54 14.47 16.72 19.34 22.40 25.99 30.22 35.19 41.06 48.03 56.31 = 11 12 13 14 15 16 17 18 19 20 21 TABLE 6.2 Bearing Capacity Factors From Eqs. (6.30), (6.29), and (6.31) (Continued) φ' Na $' Na 22 7.82 42.92 23 8.66 48.93 24 9.60 55.96 25 10.66 64.20 26 11.85 73.90 27 13.20 85.38 28 14.72 99.02 29 16.44 115.31 30 18.40 134.88 31 20.63 158.51 32 23.18 187.21 33 26.09 222.31 34 29.44 265.51 35 33.30 319.07 36 37.75 37 38 39 40 41 42 43 44 45 46 47 48 49 50 Ne 8.80 9.28 9.81 10.37 10.98 11.63 12.34 13.10 13.93 14.83 15.82 For saturated clay: p For a method: fav = acu For method: f = (₁ +2c₂) Ne 55.63 61.35 67.87 75.31 83.86 93.71 105.11 118.37 133.88 152.10 173.64 199.26 229.93 266.89 Apqp = ApCu Nc 4.77 5.26 5.80 6.40 7.07 Ny 1.44 1.69 1.97 2.29 2.65 3.06 3.53 4.07 4.68 5.39 6.20 (continued) Ny 66.19 78.03 92.25 109.41 130.22 155.55 186.54 224.64 271.76 330.35 403.67 496.01 613.16 762.89 Inclination factors by Meyerhof (1963) and Hanna and Meyerhof (1981) Fci = Fai = (1-2 Fyi = (1 - B² Bº Ne 9 for p = 0 TABLE 12.10 Variation of A with Pile Embedment Length, L Embedment length, L (m) 0 5 10 15 20 25 30 35 40 50 60 70 80 90 Coyle and Castello (1981): Embedment ratio, L/D 0 10 20 30 40 50 60 70 Qp = q'N₁ Ap 10 T T T T T e $' Bearing capacity factor, N 20 32° 36° = 30° 34° λ 0.5 0.336 0.245 0.200 0.173 0.150 0.136 0.132 0.127 0.118 0.113 0.110 0.110 0.110 38° TABLE 12.11 Variation of a (Interpo- lated Values Based on Terzaghi et al., 1996) 40° Cu Pa ≤0.1 0.2 0.3 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.4 2.8 40 60 80 100 200 Note: Pa ≈100 kN/m² Qs = atmospheric pressure Embedment ratio, L/D = : (Ko'tan 8')pL 0.15 0.2 0 5 10 15 20 25 30 a 35 36 1.00 0.92 0.82 0.74 0.62 0.54 0.48 0.42 0.40 0.38 0.36 0.35 0.34 0.34 Earth pressure coefficient, K 1.0 $' 30° 31° 32° 33° 8=0.80' 2 34° 35⁰ 36° 5
A 30 m-long precast concrete pile with diameter of 0.4 m in driven in to a thick dry sand layer. The unit weight of
the sand is 17 kN/m³. The sand is cohesionless and has an effective friction angle of 36°. Estimate the ultimate
bearing capacity by using Coyle and Castello's method for both side point bearing resistance and side resistance.
Transcribed Image Text:A 30 m-long precast concrete pile with diameter of 0.4 m in driven in to a thick dry sand layer. The unit weight of the sand is 17 kN/m³. The sand is cohesionless and has an effective friction angle of 36°. Estimate the ultimate bearing capacity by using Coyle and Castello's method for both side point bearing resistance and side resistance.
Expert Solution
steps

Step by step

Solved in 5 steps with 10 images

Blurred answer
Knowledge Booster
Calculation of settlement
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Foundation Engineering (MindTap Cou…
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
Principles of Foundation Engineering (MindTap Cou…
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781305081550
Author:
Braja M. Das
Publisher:
Cengage Learning