You would like to observe an E. coli bacterium that is 2.15 μm (micrometers) long. Because diffraction blurs an image, you would like to minimize the effects of diffraction by using a wavelength no larger than the object you are observing. For this problem, assume the wavelength is equal to the length of the bacterium. What is the energy of a photon with this wavelength? What is the energy of an electron with a de Broglie wavelength of this size? In terms of energy, which particles, photons or electrons, are the least likely to damage your sensitive biological sample? electrons? photons? they are the same

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter22: Reflection And Refraction Of Light
Section: Chapter Questions
Problem 2P
icon
Related questions
Question
100%

You would like to observe an E. coli bacterium that is 2.15 μm (micrometers) long. Because diffraction blurs an image, you would like to minimize the effects of diffraction by using a wavelength no larger than the object you are observing. For this problem, assume the wavelength is equal to the length of the bacterium.

 

What is the energy of a photon with this wavelength?

What is the energy of an electron with a de Broglie wavelength of this size?

In terms of energy, which particles, photons or electrons, are the least likely to damage your sensitive biological sample?

  • electrons?
  • photons?
  • they are the same
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Compton effect
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781285737027
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning