You pull on a string with a horizontal force of magnitude Fyb = 69 N that is attached to a block of mass mb 6 kg, then to the axle of a solid cylinder of mass m = 4.4 kg and radius r = 0.5 m, then to a spring of spring constant k = 115 N/m. This is all done on an inclined plane where there is friction (μs = 0.65 and μk = 0.36), and the incline angle is 0 = 30 degrees. Everything starts at rest, and the spring is unstretched. The block slides down the plane, the cylinder rolls down the plane (without slipping), and the spring stretches. k lllllllll Fyb b 0+ ▾ Speed First, what is the speed of the block and cylinder after you have pulled the block and cylinder 172 cm down the plane? V=

Principles of Physics: A Calculus-Based Text
5th Edition
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Raymond A. Serway, John W. Jewett
Chapter7: Conservation Of Energy
Section: Chapter Questions
Problem 15P: A block of mass m = 2.00 kg is attached to a spring of force constant k = 500 N/m as shown in Figure...
icon
Related questions
icon
Concept explainers
Topic Video
Question
You pull on a string with a horizontal force of magnitude Fyb = 69 N that is attached to a block of mass
m 6 kg, then to the axle of a solid cylinder of mass me = 4.4 kg and radius r = 0.5 m, then to a spring of
spring constant k = 115 N/m. This is all done on an inclined plane where there is friction (μs = 0.65 and μk
= 0.36), and the incline angle is 0 = 30 degrees. Everything starts at rest, and the spring is unstretched.
The block slides down the plane, the cylinder rolls down the plane (without slipping), and the spring
stretches.
k
lllllllll
Fyb
b
0
Speed
First, what is the speed of the block and cylinder after you have pulled the block and cylinder 172 cm
down the plane?
V=
Transcribed Image Text:You pull on a string with a horizontal force of magnitude Fyb = 69 N that is attached to a block of mass m 6 kg, then to the axle of a solid cylinder of mass me = 4.4 kg and radius r = 0.5 m, then to a spring of spring constant k = 115 N/m. This is all done on an inclined plane where there is friction (μs = 0.65 and μk = 0.36), and the incline angle is 0 = 30 degrees. Everything starts at rest, and the spring is unstretched. The block slides down the plane, the cylinder rolls down the plane (without slipping), and the spring stretches. k lllllllll Fyb b 0 Speed First, what is the speed of the block and cylinder after you have pulled the block and cylinder 172 cm down the plane? V=
Expert Solution
steps

Step by step

Solved in 4 steps with 3 images

Blurred answer
Knowledge Booster
Simple Harmonic Motion
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers with Modern …
Physics for Scientists and Engineers with Modern …
Physics
ISBN:
9781337553292
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers, Technology …
Physics for Scientists and Engineers, Technology …
Physics
ISBN:
9781305116399
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Classical Dynamics of Particles and Systems
Classical Dynamics of Particles and Systems
Physics
ISBN:
9780534408961
Author:
Stephen T. Thornton, Jerry B. Marion
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781285737027
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning