You land on a strange spherical planet X. As a curious physicist, you set out to make the following measurements: (1) you observe that planet X has no appreciable atmosphere, (2) you measure that if you throw a 0.25 kg stone vertically upwards with launch speed 10 m/s, it comes back to ground in 8 sec, and (3) you measure the equatorial circumference to be 250,000 km. What is the mass of planet X? [Hint: The value of g on the planet surface is related to its mass M and radius R by the formula g = GM/R2.] a) 9*1025 kg b) 2.3*1027 kg                                 c) 6.9*1026 kg If you take your spaceship to a 10,000 km altitude circular orbit around planet X, what would be the orbital period of the spaceship? [Hint: Use the fact that the gravitational force causes the radial acceleration to calculate the orbital speed.] a) 4.89 hrs                                                         b) 9.78 hrs                                      c) 19.56 hrs

The Solar System
9th Edition
ISBN:9781305804562
Author:Seeds
Publisher:Seeds
Chapter13: Venus And Mars
Section: Chapter Questions
Problem 1DQ
icon
Related questions
Question

You land on a strange spherical planet X. As a curious physicist, you set out to make the following measurements: (1) you observe that planet X has no appreciable atmosphere, (2) you measure that if you throw a 0.25 kg stone vertically upwards with launch speed 10 m/s, it comes back to ground in 8 sec, and (3) you measure the equatorial circumference to be 250,000 km. What is the mass of planet X? [Hint: The value of g on the planet surface is related to its mass M and radius R by the formula g = GM/R2.]

a) 9*1025 kg

b) 2.3*1027 kg                                

c) 6.9*1026 kg

If you take your spaceship to a 10,000 km altitude circular orbit around planet X, what would be the orbital period of the spaceship? [Hint: Use the fact that the gravitational force causes the radial acceleration to calculate the orbital speed.]

a) 4.89 hrs                                                        

b) 9.78 hrs                                     

c) 19.56 hrs

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps

Blurred answer
Knowledge Booster
Kepler's Laws
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
The Solar System
The Solar System
Physics
ISBN:
9781305804562
Author:
Seeds
Publisher:
Cengage