Water enters a tube at 29°C with a flow rate of 460 kg/h. The rate of heat transfer from the tube wall to the fluid is given as qs′(W/m)=ax, where the coefficient a is 25 W/m2 and x(m) is the axial distance from the tube entrance. (a) Beginning with a properly defined differential control volume in the tube, derive an expression for the temperature distribution Tm(x) of the water. (b) What is the outlet temperature of the water for a heated section 31 m long? (c) Sketch the mean fluid temperature, Tm(x), and the tube wall temperature, Ts(x), as a function of distance along the tube for fully developed and developing flow conditions.

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter6: Forced Convection Over Exterior Surfaces
Section: Chapter Questions
Problem 6.21P
icon
Related questions
Question

Water enters a tube at 29°C with a flow rate of 460 kg/h. The rate of heat transfer from the tube wall to the fluid is given as qs′(W/m)=ax, where the coefficient a is 25 W/m2 and x(m) is the axial distance from the tube entrance.

 

(a)  Beginning with a properly defined differential control volume in the tube, derive an expression for the temperature distribution Tm(x) of the water.

(b)  What is the outlet temperature of the water for a heated section 31 m long?

(c)  Sketch the mean fluid temperature, Tm(x), and the tube wall temperature, Ts(x), as a function of distance along the tube for fully developed and developing flow conditions.

(d)  What value of a uniform wall heat flux, qs″ (instead of qs′=ax), would provide the same fluid outlet temperature as that determined in part 8.13b? For this type of heating, sketch the temperature distributions requested in part 8.13c.

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Convection
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning