Two electrons in the same atom both have n = 6 and = 1. Assume the electrons are distinguishable, so that interchanging them defines a new state. (a) How many states of the atom are possible considering the quantum numbers these two electrons can have? (b) How many states would be possible if the exclusion principle were inoperative?

Modern Physics
3rd Edition
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Chapter9: Atomic Structure
Section: Chapter Questions
Problem 17P
icon
Related questions
Question
Two electrons in the same atom both have n = 6 and l = 1. Assume the electrons are distinguishable, so that interchanging them defines a new state.
(a) How many states of the atom are possible considering the quantum numbers these two electrons can have?
(b) How many states would be possible if the exclusion principle were inoperative?
Transcribed Image Text:Two electrons in the same atom both have n = 6 and l = 1. Assume the electrons are distinguishable, so that interchanging them defines a new state. (a) How many states of the atom are possible considering the quantum numbers these two electrons can have? (b) How many states would be possible if the exclusion principle were inoperative?
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Knowledge Booster
Hydrogen Atom
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Modern Physics
Modern Physics
Physics
ISBN:
9781111794378
Author:
Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:
Cengage Learning