Imagine a physics lecture hall with 83 students who are settling in for a 1-hour lecture. At the start of the lecture, the temperature of the air in the room is a comfortable 70oF (21.1°C). Unfortunately, the room’s air conditioner breaks right as the lecture begins. Each student has an average power output of about 60.0 W at room temperature. Imagine the energy released by each student goes into heating just the air in the room, which has a volume of 9.50 × 102 m3 and a density of 1.20 kg/m3. Assume the volume of the air remains constant and the specific heat capacity of the air is 718 J/(kg · °C). Calculate the room’s temperature at the end of the lecture in oF (the answer may sound high (!), but in reality, a significant portion of the heat produced would be absorbed by the walls, ceiling, floors, chairs, desks, and so on, which we are neglecting).

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter12: The Laws Of Thermodynamics
Section: Chapter Questions
Problem 44P: A power plant has been proposed that would make use of the temperature gradient in the ocean. The...
icon
Related questions
Question
Imagine a physics lecture hall with 83 students who are settling in for a 1-hour lecture. At the start of the lecture, the temperature of the air in the room is a comfortable 70oF (21.1°C). Unfortunately, the room’s air conditioner breaks right as the lecture begins. Each student has an average power output of about 60.0 W at room temperature. Imagine the energy released by each student goes into heating just the air in the room, which has a volume of 9.50 × 102 m3 and a density of 1.20 kg/m3. Assume the volume of the air remains constant and the specific heat capacity of the air is 718 J/(kg · °C). Calculate the room’s temperature at the end of the lecture in oF (the answer may sound high (!), but in reality, a significant portion of the heat produced would be absorbed by the walls, ceiling, floors, chairs, desks, and so on, which we are neglecting).
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps

Blurred answer
Knowledge Booster
Thermodynamic Work done
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781285737027
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
Physics for Scientists and Engineers, Technology …
Physics for Scientists and Engineers, Technology …
Physics
ISBN:
9781305116399
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781938168000
Author:
Paul Peter Urone, Roger Hinrichs
Publisher:
OpenStax College