Consider a 25 mm×25 mm×1 mm thick silicon die attached to a same size 2 mm-thick copper cap through a 0.1 mm thick thermal interface material (TIM) as shown in Figure 2.1. Convection heat transfer coefficient on the top side of the copper cap is 2500 W/m²°C. If thermal conductivity of silicon, copper, and thermal interface material are 125, 390, and 5 W/m°C, respectively, what is the total thermal resistance from the active (bottom) side of the silicon die to outside ambient?

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter2: Steady Heat Conduction
Section: Chapter Questions
Problem 2.40P: One end of a 0.3-m-long steel rod is connected to a wall at 204C. The other end is connected to a...
icon
Related questions
Question
Example 2.10
Consider a 25 mm x 25 mm x 1 mm thick silicon die attached to a same size 2
mm-thick copper cap through a 0.1 mm thick thermal interface material (TIM)
as shown in Figure 2.1. Convection heat transfer coefficient on the top side of
the copper cap is 2500 W/m²°C. If thermal conductivity of silicon, copper, and
thermal interface material are 125, 390, and 5 W/m°C, respectively, what is the
total thermal resistance from the active (bottom) side of the silicon die to outside
ambient?
Transcribed Image Text:Example 2.10 Consider a 25 mm x 25 mm x 1 mm thick silicon die attached to a same size 2 mm-thick copper cap through a 0.1 mm thick thermal interface material (TIM) as shown in Figure 2.1. Convection heat transfer coefficient on the top side of the copper cap is 2500 W/m²°C. If thermal conductivity of silicon, copper, and thermal interface material are 125, 390, and 5 W/m°C, respectively, what is the total thermal resistance from the active (bottom) side of the silicon die to outside ambient?
Expert Solution
steps

Step by step

Solved in 3 steps with 16 images

Blurred answer
Knowledge Booster
Conduction
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning