A uniform rod of mass 150 g and length 100 cm is free to rotate in a horizontal plane around a fixed vertical axis through its center, perpendicular to its length. Two small beads, each of mass 22 g, are mounted in grooves along the rod. Initially, the two beads are held by catches on opposite sides of the rod's center, 18 cm from the axis of rotation. With the beads in this position, the rod is rotating with an angular velocity of 16.0 rad/s. When the catches are released, the beads slide outward along the rod. (a) What is the rod's angular velocity (in rad/s) when the beads reach the ends of the rod? (Indicate the direction with the sign of your answer.) rad/s (b) What is the rod's angular velocity (in rad/s) if the beads fly off the rod? (Indicate the direction with the sign of your answer.) rad/s

University Physics Volume 1
18th Edition
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:William Moebs, Samuel J. Ling, Jeff Sanny
Chapter11: Angular Momentum
Section: Chapter Questions
Problem 60P: A uniform rod of mass 200 g and length 100 cm is free to rotate in a horizontal plane around a fixed...
icon
Related questions
icon
Concept explainers
Question

Physics written by hand. 

A uniform rod of mass 150 g and length 100 cm is free to rotate in a horizontal plane around a fixed vertical axis through its center, perpendicular to its length. Two small
beads, each of mass 22 g, are mounted in grooves along the rod. Initially, the two beads are held by catches on opposite sides of the rod's center, 18 cm from the axis of
rotation. With the beads in this position, the rod is rotating with an angular velocity of 16.0 rad/s. When the catches are released, the beads slide outward along the rod.
(a) What is the rod's angular velocity (in rad/s) when the beads reach the ends of the rod? (Indicate the direction with the sign of your answer.)
rad/s
(b) What is the rod's angular velocity (in rad/s) if the beads fly off the rod? (Indicate the direction with the sign of your answer.)
rad/s
Transcribed Image Text:A uniform rod of mass 150 g and length 100 cm is free to rotate in a horizontal plane around a fixed vertical axis through its center, perpendicular to its length. Two small beads, each of mass 22 g, are mounted in grooves along the rod. Initially, the two beads are held by catches on opposite sides of the rod's center, 18 cm from the axis of rotation. With the beads in this position, the rod is rotating with an angular velocity of 16.0 rad/s. When the catches are released, the beads slide outward along the rod. (a) What is the rod's angular velocity (in rad/s) when the beads reach the ends of the rod? (Indicate the direction with the sign of your answer.) rad/s (b) What is the rod's angular velocity (in rad/s) if the beads fly off the rod? (Indicate the direction with the sign of your answer.) rad/s
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Moment of inertia
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
University Physics Volume 1
University Physics Volume 1
Physics
ISBN:
9781938168277
Author:
William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:
OpenStax - Rice University
Glencoe Physics: Principles and Problems, Student…
Glencoe Physics: Principles and Problems, Student…
Physics
ISBN:
9780078807213
Author:
Paul W. Zitzewitz
Publisher:
Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
Physics for Scientists and Engineers with Modern …
Physics for Scientists and Engineers with Modern …
Physics
ISBN:
9781337553292
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning