A structure that can be idealized as a SDOF system has a mass 100 kg, a stiffness of 40 kN/m and a damping ratio of 0.10. If it is subjected to a harmonic dynamic force given by p(t) = 500 sin(15 t) N, determine (a) the dynamic amplification under steady-state conditions; (b) the maximum velocity of the steady state vibration; and (c) the maximum amplitude if the forcing frequency was equal to the system frequency (a resonant condition).

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
A structure that can be idealized as a SDOF system has a mass 100 kg, a stiffness of 40 kN/m
and a damping ratio of 0.10. If it is subjected to a harmonic dynamic force given by p(t) = 500
sin(15 t) N, determine (a) the dynamic amplification under steady-state conditions; (b) the
maximum velocity of the steady state vibration; and (c) the maximum amplitude if the forcing
frequency was equal to the system frequency (a resonant condition).
Transcribed Image Text:A structure that can be idealized as a SDOF system has a mass 100 kg, a stiffness of 40 kN/m and a damping ratio of 0.10. If it is subjected to a harmonic dynamic force given by p(t) = 500 sin(15 t) N, determine (a) the dynamic amplification under steady-state conditions; (b) the maximum velocity of the steady state vibration; and (c) the maximum amplitude if the forcing frequency was equal to the system frequency (a resonant condition).
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY