28. An elliptical orbit can be analyzed using conservation of angular momentum and mechanical energy. The distance between Earth, mass 5.972 × 1024 kg, and Sun, mass 1.989 × 1030 kg, varies from 147 to 152 Gm. (a) Use the formula UG = Gm₁m2/r to find the change in potential energy that occurs moving from the farthest distance to the nearest. (b) Given that the speed of Earth at its farthest point is 29.29 km/s, use conservation of energy to find its speed at the nearest point. (c) Calculate the angular momentum of Earth at each extreme and show that it is equal. 29. Use concepts from the previous problem to find the speed of Pluto at each extreme of its orbit about the Sun – distance varying from 4.44 × 1012 m to 7.38 × 1012 m. Hint: use a system of equations based on conservation of energy and angular momentum.

Physics for Scientists and Engineers, Technology Update (No access codes included)
9th Edition
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Raymond A. Serway, John W. Jewett
Chapter13: Universal Gravitation
Section: Chapter Questions
Problem 13.48P
icon
Related questions
Question

28.  An elliptical orbit can be analyzed using conservation of angular momentum and mechanical energy.  The distance between Earth, mass 5.972 × 1024 kg, and Sun, mass 1.989 × 1030 kg, varies from 147 to 152 Gm.  (a) Use the formula UG = – Gm1m2/r to find the change in potential energy that occurs moving from the farthest distance to the nearest.  (b) Given that the speed of Earth at its farthest point is 29.29 km/s, use conservation of energy to find its speed at the nearest point.  (c) Calculate the angular momentum of Earth at each extreme and show that it is equal.
29.  Use concepts from the previous problem to find the speed of Pluto at each extreme of its orbit about the Sun – distance varying from 4.44  × 1012 m to 7.38 × 1012 m.  Hint:  use a system of equations based on conservation of energy and angular momentum.

P.S. I already solved 28 but I don't know how to do 29. 

28. An elliptical orbit can be analyzed using conservation of angular momentum and mechanical energy. The distance between Earth, mass 5.972 × 1024 kg, and Sun, mass 1.989 × 1030 kg, varies from 147 to 152 Gm. (a) Use the
formula UG = Gm₁m2/r to find the change in potential energy that occurs moving from the farthest distance to the nearest. (b) Given that the speed of Earth at its farthest point is 29.29 km/s, use conservation of energy to find its
speed at the nearest point. (c) Calculate the angular momentum of Earth at each extreme and show that it is equal.
29. Use concepts from the previous problem to find the speed of Pluto at each extreme of its orbit about the Sun – distance varying from 4.44 × 1012 m to 7.38 × 1012 m. Hint: use a system of equations based on conservation of
energy and angular momentum.
Transcribed Image Text:28. An elliptical orbit can be analyzed using conservation of angular momentum and mechanical energy. The distance between Earth, mass 5.972 × 1024 kg, and Sun, mass 1.989 × 1030 kg, varies from 147 to 152 Gm. (a) Use the formula UG = Gm₁m2/r to find the change in potential energy that occurs moving from the farthest distance to the nearest. (b) Given that the speed of Earth at its farthest point is 29.29 km/s, use conservation of energy to find its speed at the nearest point. (c) Calculate the angular momentum of Earth at each extreme and show that it is equal. 29. Use concepts from the previous problem to find the speed of Pluto at each extreme of its orbit about the Sun – distance varying from 4.44 × 1012 m to 7.38 × 1012 m. Hint: use a system of equations based on conservation of energy and angular momentum.
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Similar questions
Recommended textbooks for you
Physics for Scientists and Engineers, Technology …
Physics for Scientists and Engineers, Technology …
Physics
ISBN:
9781305116399
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781285737027
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
Classical Dynamics of Particles and Systems
Classical Dynamics of Particles and Systems
Physics
ISBN:
9780534408961
Author:
Stephen T. Thornton, Jerry B. Marion
Publisher:
Cengage Learning
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Inquiry into Physics
Inquiry into Physics
Physics
ISBN:
9781337515863
Author:
Ostdiek
Publisher:
Cengage