0.0519 kg of biphenyl (C₁₂H₁₀) is dissolve in benzene (C₆H₆) to create a solution with a total volume of 350.0 mL. (Assume the change in volume is negligible)   What intermolecular forces are shared between biphenyl and benzene? If the boiling point of pure benzene is 80.1 °C, then what would be the boiling point of this solution in °C? (Kb for benzene is 2.53 °C/m and the density of benzene is 0.877 g/mL) If the vapor pressure of pure benzene is 24.4 kPa at 40.0 °C, then what will the vapor pressure of the solution be in kPa? (Consider biphenyl to be nonvolatile and the density of benzene is 0.877 g/mL) What would be the osmotic pressure (in atm) of this solution at 40.0 °C? Assume the density of the solution is the same as benzene, 0.877 g/mL.

General Chemistry - Standalone book (MindTap Course List)
11th Edition
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Chapter12: Solutions
Section: Chapter Questions
Problem 12.25QP: Consider two hypothetical pure substances, AB(s) and XY(s). When equal molar amounts of these...
icon
Related questions
Question
100%
0.0519 kg of biphenyl (C₁₂H₁₀) is dissolve in benzene (C₆H₆) to create a solution with a total volume of 350.0 mL. (Assume the change in volume is negligible)
 
What intermolecular forces are shared between biphenyl and benzene?
If the boiling point of pure benzene is 80.1 °C, then what would be the boiling point of this solution in °C? (Kb for benzene is 2.53 °C/m and the density of benzene is 0.877 g/mL)
If the vapor pressure of pure benzene is 24.4 kPa at 40.0 °C, then what will the vapor pressure of the solution be in kPa? (Consider biphenyl to be nonvolatile and the density of benzene is 0.877 g/mL)
What would be the osmotic pressure (in atm) of this solution at 40.0 °C? Assume the density of the solution is the same as benzene, 0.877 g/mL.
 
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps

Blurred answer
Knowledge Booster
Solutions
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
General Chemistry - Standalone book (MindTap Cour…
General Chemistry - Standalone book (MindTap Cour…
Chemistry
ISBN:
9781305580343
Author:
Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:
Cengage Learning
Chemistry: The Molecular Science
Chemistry: The Molecular Science
Chemistry
ISBN:
9781285199047
Author:
John W. Moore, Conrad L. Stanitski
Publisher:
Cengage Learning
Chemistry & Chemical Reactivity
Chemistry & Chemical Reactivity
Chemistry
ISBN:
9781133949640
Author:
John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:
Cengage Learning
Chemistry & Chemical Reactivity
Chemistry & Chemical Reactivity
Chemistry
ISBN:
9781337399074
Author:
John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:
Cengage Learning
Chemistry: Principles and Practice
Chemistry: Principles and Practice
Chemistry
ISBN:
9780534420123
Author:
Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:
Cengage Learning
Chemistry: Matter and Change
Chemistry: Matter and Change
Chemistry
ISBN:
9780078746376
Author:
Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:
Glencoe/McGraw-Hill School Pub Co