cleaned_23_Testbank

.docx

School

University of Minnesota-Twin Cities *

*We aren’t endorsed by this school

Course

1001

Subject

Astronomy

Date

Apr 3, 2024

Type

docx

Pages

23

Uploaded by tarunbalaji on coursehero.com

The Cosmic Perspective, 7e (Bennett et al.) Chapter 23 Dark Matter, Dark Energy, and the Fate of the Universe 23.1 Multiple-Choice Questions 1) Why do we call dark matter "dark"? A) It emits no visible light. B) We cannot detect the type of radiation that it emits. C) It emits no or very little radiation of any wavelength. D) It blocks out the light of stars in a galaxy. 2) What is meant by "dark energy"? A) the energy associated with dark matter through E=mc2 B) any unknown force that opposes gravity C) the agent causing the universal expansion to accelerate D) highly energetic particles that are believed to constitute dark matter E) the total energy in the Universe after the Big Bang but before the first stars 3) Why do we believe 90 percent of the mass of the Milky Way is in the form of dark matter? A) The orbital speeds of stars far from the galactic center are surprisingly high, suggesting that these stars are feeling gravitational effects from unseen matter in the halo. B) Although dark matter emits no visible light, it can be seen with radio wavelengths, and such observations confirm that the halo is full of this material. C) Theoretical models of galaxy formation suggest that a galaxy cannot form unless it has at least 10 times as much matter as we see in the Milky Way disk, suggesting that the halo is full of dark matter. D) Our view of distant galaxies is sometimes obscured by dark blotches in the sky, and we believe these blotches are dark matter located in the halo. 4) How do we know that there is much more mass in the halo of our galaxy than in the disk? A) There are so many globular clusters in the halo that their total mass is greater than the mass of stars in the disk. B) Stars in the outskirts of the Milky Way orbit the galaxy at much higher speeds than we would expect if all the mass were concentrated in the disk.
C) Although the question of mass in the halo was long mysterious, we now know it exists because we see so many brown dwarfs in the halo. D) The recent discovery of photinos, combined with theoretical predictions, tells us that there must be a huge mass of photinos in the halo. E) We don't know that there is more mass in the halo; it is only a guess based on theory. 5) What evidence suggests that the Milky Way contains dark matter? A) We observe clouds of atomic hydrogen far from the galactic center orbiting the galaxy at unexpectedly high speeds, higher speeds than they would have if they felt only the gravitational attraction from objects that we can see. B) We see many lanes of dark material blocking out the light of stars behind them along the band of the Milky Way. C) We see many dark voids between the stars in the halo of the Milky Way. D) When we observe in different wavelengths, such as infrared or radio, we see objects that don't appear in visible-light observations. E) When we look at the galactic center, we are able to observe a large black hole that is composed of dark matter. 6) If there is no dark matter in the Milky Way Galaxy, what is the best alternative explanation for the observations? A) We are not measuring the orbital velocities of atomic clouds and stars properly. B) We are not measuring the distances to atomic clouds and stars properly. C) We are not attributing enough mass to the visible or "bright" matter. D) We are not observing all the visible or "bright" matter in the galaxy. E) Our understanding of gravity is not correct for galaxy-size scales. 7) How are rotation curves of spiral galaxies determined beyond radii where starlight can be detected? A) by extrapolation B) through observations of the 21 cm line of atomic hydrogen C) through observations of spectral lines of dark matter D) by watching the galaxies rotate over a period of years
E) by measuring the broadening of absorption lines 8) The distribution of the dark matter in a spiral galaxy is A) approximately spherical and about the same size as the galaxy halo. B) approximately spherical and about ten times the size of the galaxy halo. C) flattened in a disk and about the same size as the stellar disk. D) flattened in a disk but about ten times larger than the stellar disk. E) predominantly concentrated in the spiral arms. 9) How do we determine the amount of dark matter in elliptical galaxies? A) We measure the orbital velocities of star-forming gas clouds around the outer portions of the galaxy. B) We measure the speeds of stars at different radii from the galactic center and determine how much mass is interior to the orbit. C) We count the number of stars in the galaxy and determine its volume, so that we can calculate the galaxy's density. D) We search for dark lanes of dust and black holes within the galaxy. E) We measure how fast the galaxy rotates as a whole. 10) When we see that a spectral line of a galaxy is broadened, that is, spanning a range of wavelengths, we conclude that A) we do not have very good resolution of a star's orbital velocity. B) there are many stars traveling at extremely high orbital velocities. C) there are different Doppler shifts among the individual stars in the galaxy. D) we are actually measuring the orbital velocity of a cloud of atomic gas. E) we are actually measuring the orbital velocity of dark matter. 11) A large mass-to-light ratio for a galaxy indicates that A) the galaxy is very massive. B) the galaxy is not very massive. C) on average, each solar mass of matter in the galaxy emits less light than our Sun.
D) on average, each solar mass of matter in the galaxy emits more light than our Sun. E) most stars in the galaxy are more massive than our Sun. 12) What is the mass-to-light ratio for the inner region of the Milky Way Galaxy, in units of solar masses per solar luminosity? A) 1,000 B) 600 C) 100 D) 6 E) 0.1 13) Compared to the central regions of spiral galaxies, we expect elliptical galaxies to have A) higher mass-to-light ratios because stars in elliptical galaxies are dimmer than those in spirals. B) lower mass-to-light ratios because stars in elliptical galaxies are dimmer than those in spirals. C) higher mass-to-light ratios because stars in elliptical galaxies do not have high orbital velocities. D) lower mass-to-light ratios because elliptical galaxies have less gas and dust than spirals. E) the same mass-to-light ratio because they are made of the same material, stars and dark matter. 14) If a galaxy's overall mass-to-light ratio is 100 solar masses per solar luminosity, and its stars account for only 5 solar masses per solar luminosity, how much of the galaxy's mass must be dark matter? A) 100 percent B) 95 percent C) 80 percent D) 50 percent E) 5 percent 15) Which of the following methods used to determine the mass of a cluster does not depend on Newton's laws of gravity?
A) measuring the orbital velocities of galaxies in a cluster B) measuring the temperature of X-ray gas in the intracluster medium C) measuring the amount of distortion caused by a gravitational lens D) none of the above 16) Why wasn't the intracluster medium in galaxy clusters discovered until the 1960s? A) We did not know how much dark matter existed before then. B) We didn't have the resolution to observe galaxy clusters until then. C) The Milky Way was blocking our view of distant galaxy clusters. D) The medium emits X rays, which are blocked by the Earth's atmosphere and require X- ray satellites in space in order to be observed. E) Radiation emitted by the medium was so dim that we couldn't detect it until we built much larger telescopes. 17) Which of the following statements about rich clusters of galaxies (those with thousands of galaxies) is not true? A) They are sources of X-ray emission due to the presence of hot, intergalactic gas. B) There likely have been numerous collisions among the member galaxies at some time in the past. C) Galaxies in the central regions are predominantly spirals, while elliptical galaxies roam the outskirts. D) They often have a very large, central dominant galaxy near their center, perhaps formed by the merger of several individual galaxies. E) The speeds of the galaxies in the cluster indicate that most of the cluster mass is dark matter. 18) Gravitational lensing occurs when A) massive objects bend light beams that are passing nearby. B) massive objects cause more distant objects to appear much larger than they should and we can observe the distant objects with better resolution. C) dark matter builds up in a particular region of space, leading to a very dense region and an extremely high mass-to-light ratio.
D) telescope lenses are distorted by gravity. 19) Which of the following is not evidence for dark matter? A) the flat rotation curves of spiral galaxies B) the broadening of absorption lines in an elliptical galaxy's spectrum C) X-ray observations of hot gas in galaxy clusters D) gravitational lensing around galaxy clusters E) the expansion of the universe 20) Which of the following particles are baryons? A) electrons B) neutrinos C) protons D) quarks E) photons 21) Which of the following is an example of baryonic matter? A) you B) the particles produced by physicists in particle accelerators C) electrons and positrons produced by pair production D) WIMPs E) neutrinos 22) Measuring the amount of deuterium in the universe allows us to set a limit on A) the temperature of the universe at the end of the era of nuclei. B) the total amount of mass in the universe. C) the density of ordinary (baryonic) matter in the universe. D) the expansion rate of the universe. E) the current age of the universe.
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help